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Data for Robust Control of Energy Storage
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Abstract—Short-term forecasting is frequently identified
as an important tool for the effective management of wind
generation. However, forecasting errors, inherent to the
point forecasts, increase requirements for energy stor-
age and can affect optimal system operation. Probabilistic
forecasts can help tackle this issue by providing a proper
characterization of forecasting errors in the optimization
process. This paper proposes a multivariate model of fore-
casting data for wind generation. Predictive uncertainty in-
tervals of wind power can be obtained by sampling from
the proposed model. The main goal is to use empirical data
models without linear or Gaussian approximations of the
distributional or temporal variations. The predictive mod-
eling is utilized within a case study of an energy storage
system. A modified robust convex programming is used to
maintain the practical robustness and feasibility of the so-
lution based on the sampled scenarios from the model.

Index Terms—Data analytics, energy storage, forecast-
ing, microgrid, prediction intervals (PIs), predictive ensem-
bles, robust optimization, smart grid, wind power.

I. INTRODUCTION

ABETTER integration of wind power forecasts in oper-
ational management tools can facilitate introduction of

wind power in microgrids and smart grids [1]. A modern wind
power forecasting tool may use numerical weather predic-
tion (NWP) models, supervisory control and data acquisition
(SCADA) data and other information about the characteristics
of wind power plants [2], [3]. Some of the models that are
referred to as the model-driven approaches, can perform very
well in long-term forecasts [4], [5]. However, these approaches
need large meteorological data, detailed terrain characteristics,
and configuration of wind turbines in order to build an accu-
rate model at the first place which makes them impractical for
short-term applications.
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Another category of forecasting tools for short-term wind
power is based on data-driven or artificial intelligence
approaches [6]–[9]. Model training in these approaches uses
historical data of wind speed and possibly other NWP-related
data such as wind direction. Well-known methods include per-
sistence method [8], auto regressive-type models [10], and the
methods that use stochastic processes [11], artificial neural net-
works (ANNs) [12], [13], and fuzzy systems [14]. The meth-
ods in this category can be used for different turbines, diverse
geographical areas, and different wind locations. The generated
forecast is the average wind power expected to be available from
the wind farm during the considered look-ahead time. This is
also referred to as the point forecast that provides only a single
value for the considered time index.

Extensive research has been reported on point forecasting
methods and their performance which use different types of re-
gression models as mentioned above [1], [4]. These approaches
use deterministic models and therefore cannot guarantee a robust
estimation of future wind power uncertainty. In order to tackle
forecast uncertainty, some propose a combination of model-
driven and data-driven solutions [15].

In order to complement above-mentioned point forecasts
which only provide projected mean values of the wind power
(conditional on the previous observations), probabilistic fore-
casts, on the other hand, offer full distributions of wind power
for the considered look-ahead times. In power system opera-
tions, it is desirable to predict exact probabilities associated
with different wind power levels for future observations. This is
particularly useful when a certain degree of robustness is sought
for the reliable operation of storage against uncertainty of point
forecasts.

Probabilistic forecasting may refer to a wide range of meth-
ods that study different models for characterization or online
estimation of uncertainty. The uncertainty is reflected either in
the point forecasts or in the wind power variations itself. The
existing literature may also express the forecasting uncertainty
and prediction intervals (PIs) in the form of a set of quantiles
or intervals, mean, variance, or probability density functions
(pdfs) [16]–[22]. Among these representations, pdfs are the most
generic format for calculations yet the most commonly used rep-
resentation in final decision making is by quantiles [23]. Interval
evaluations of power system variables benefit from wind power
PIs as recently reported for power flow analysis and locational
marginal pricing [24], [25].

A set of quantiles represents the empirical cumulative distri-
bution function (cdf) that can be calculated from a full pdf by
using kernel smoothing [26]–[28]. This pdf estimates the true
underlying forecasting error distribution of wind power and can
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be provided by either a parametric or a nonparametric represen-
tation. Nonparametric or empirical representation is the most
natural and accurate way of modeling the PIs; because it can
reflect how the real wind and error data change and can be calcu-
lated from historical forecasting data [22]. The disadvantage of
these quantile methods is that modeling requires building spe-
cific training sets; for example, in order to calculate with respect
to a quantile curve, training and modeling for each quantile is
inevitable. This increases the computational burden and chances
of inaccuracies due to outliers such as quantile crossing.

The temporal dependence structure of the forecasting error
series (or PIs) has been modeled by the covariance matrix [20].
Temporal dependence is studied as the correlation between val-
ues of the data at different points in time or across time. Effects
of the dependence between adjacent wind farms, i.e., spatial
dependence, has been studied [29]. Also, conditional PIs ex-
pressed by fuzzy classification has been proposed to account for
the effects of wind power levels on the forecasting error [18].

On the other hand, existing probabilistic forecasts that are de-
veloped for consecutive look-ahead times, do not consider cross
correlations between wind power and error time series. Error
time series does not exhibit any particular data structure as they
are intrinsic to the forecasting method. In fact, the cross correla-
tions and dependences between the forecasting error series over
the considered time horizon are valuable characteristics, par-
ticularly, for power system problems that have time-dependent
memory in applications such as unit commitment or energy
storage management [1].

This paper proposes a multivariate time series modeling of
wind power PIs and uncertainty ensembles in order to capture the
following nonlinear nonparametric characteristics all together.

1) Temporal dependence of forecasting error time series that
is the dependence between forecasting error distributions
at each time index.

2) Temporal dependence of wind power time series.
3) Interdependence or cross correlation between wind power

time series and the corresponding error series.
4) Empirical distributions of forecasting error and wind

power data at each time index as well as the considered
time horizon. The calculated final distributions, ensem-
bles, or PIs would be conditional on previous observa-
tions.

The proposed modeling approach is nonparametric in the
sense that it does not rely on data belonging to any particular
distribution. Also, it is nonlinear as it quantifies nonlinear depen-
dence. The proposed algorithm uses the copula-based modeling.
Once the model is fitted to the historical data, the conditional
forecast error ensembles at each look-ahead time or PIs can be
calculated very fast. The modeling is handled offline while the
conditional ensembles or PIs are calculated in real time. This can
be viewed as an adaptive probabilistic forecasting for different
look-ahead time periods.

Optimization of power systems and energy storage calcu-
lations relies on the accuracy and reliability of probabilistic
forecasts which are the main focus of this paper. However, it
is also important how to solve for an optimal strategy. Robust
optimization in contrast to stochastic optimization is selected in
this paper. The motivation is twofold. First, the model of uncer-
tainty in robust optimization is set-based. This is an appropriate

notion of parameter uncertainty for the presented application
as the conditional forecast ensembles or PIs are calculated in
a set by sampling from the proposed model. Second, computa-
tional tractability should be maintained for different objective
functions and constraints. Here, the operator constructs a so-
lution that is feasible for all realizations of the forecast in a
given set.

An extensive review of different approaches to robust opti-
mization is presented by [36]. A worst-case solution using the
lower and upper bounds of the forecasts might not be desirable
for most of the problems, since it considers all possible uncer-
tainty scenarios, including those that are particularly unlikely to
happen. Solutions to optimization problems can have significant
sensitivity to future changes in the parameters of the problem.
This can render a computed solution suboptimal or infeasible.
In order to deal with this issue, robust programming paradigm
covers a range of methods [30] that see a decision environment
as characterized by a knowledge of the data and that it belongs to
a given uncertainty set, feasibility of the solution meaning that
it satisfies all viable realizations of the constraints, and compu-
tational tractability of the robust formulation counterpart to the
deterministic problem.

Several optimization methods can be used to obtain robust
optimal solutions based on these characteristics [30]–[35]. Con-
struction of an uncertainty set from data models (step 1 above)
can significantly affect the final tradeoff solution. Some of the
existing methods are purely deterministic based on a set of
parameters consistent with data, whereas other methods allow
adaptive adjustments [36]–[38]. As a recently emerged approach
[39], uncertain parameters (affected by the forecasting error)
are modeled as empirical random scenarios defined on an un-
certainty set; then, the decision-making program optimizes the
system with observations of the uncertainty within that set. Suc-
cessful implementation of this approach in robust control the-
ory is first reported by Calafiore and Campi [39] and recently
extended to nonconvex nonlinear cases [40]. The main idea is
based on a probabilistic version of the well-known robust con-
vex programming (RCP) [32]. The approach adopted in this
paper has the following features.

1) A precalculated number of samples from the uncertainty
model is used to modify the corresponding standard prob-
lem. The new robust problem is referred to as the aggre-
gated robust program (ARP).

2) There is a probabilistic guarantee of robust stability and
constraint satisfaction (as will be shown in Section III).

3) Only constraints in the ARP require convexity with re-
spect to the design variable, while generic nonlinear func-
tions with respect to the uncertain variables are allowed.
This is not a strict requirement but only ensures feasibility
over the unseen constraints [39].

4) The ARP is solved in a single run thus avoiding computa-
tional burden compared to the traditional scenario-based
stochastic programming techniques.

5) Any deterministic optimization method can be used to
solve the ARP.

The main objective of the ARP’s robustness is to provide an
explicit bound on the probability of possible violation of the
constraints. This approach can effectively apply the proposed
uncertainty model in this paper and is outlined in Section III.
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Then, an alternative energy storage-based microgrid is studied
in order to illustrate the effectiveness of the proposed forecasting
error characterization. The main contributions of this paper that
can help implement robust operations of wind power capacity
are as follows.

1) Develop a probabilistic model of the forecasting error
data that can utilize empirical distributions, as well as
nonlinear temporal dependence of wind power.

2) Incorporate the cross correlations between wind power
data and error data over the consecutive forecasting time
horizons. The output from the forecasting model is con-
ditional ensembles or PIs of wind generation for different
look-ahead times.

3) Use a robust optimization of energy storage, as an alter-
native to the Monte Carlo-based algorithms, that can use
the output from the proposed probabilistic forecast.

In the following sections, the proposed model for calculating
the conditional PIs of wind power is described. Then, the RCP
and ARP are explained in order to illustrate how to use the pro-
posed probabilistic forecasts for optimizing a wind-based power
system. The case study provides a solution to the management
of the available energy storage that should be robust against the
characteristic uncertainty of the wind power forecasts.

II. MULTIVARIATE APPROACH TO CALCULATING

CONDITIONAL PIS

PIs can be used in predictive inference procedures in order to
deal with the uncertainty of point forecasts [41]. Future obser-
vations of wind power, according to the estimated probability,
will fall in PIs, given what has already been observed. The main
objective is to provide an empirical distribution of error for a
current forecast value; hence, the inherent uncertainty of point
forecasts can be predicted.

Most methods to construct PIs involve running a point fore-
cast program (e.g., the regression neural network or the ANN)
on a set of historical data [42]. A wind power forecast is obtained
at each time instant within prespecified periods as a sliding win-
dow covering a certain number of hours. The forecast program
predicts the wind power τ hours later based on the past hourly
wind power values as far as R number of hours. This procedure
should be carried out using a comprehensive wind power dataset
that is the training matrix of the predictor. Hence, a complete
set of forecasts is obtained by training the neural network using
Q vectors of length R as input for which the targets of interest
were the recorded wind power τ hours later.

For example, Fig. 1 illustrates the input and target for Q = 3,
τ = 5 and R = 4. Then, the forecasts are subtracted from the
recorded target values in each period. This provides an error
series along with the historical data. From this step forward, the
probabilistic characterization of the point forecast uncertainty
can be formulated as follows.

If wind power time series is of length Γ, the error time se-
ries would be of length (Γ − τ − R), according to Fig. 2. By
rearranging the error series and the corresponding observations
in the consecutive periods (0, T ], (T, 2T ],...,((ζ − 1)T , ζT ], the
following matrix can be obtained:

M =
[
Mω Mε

]
(1)

Fig. 1. Regression-based point forecasting for wind power: W1 , W2 ,
W3 are the inputs, T1 , T2 , T3 are the targets used for training. Here
Q = 3, R = 4, and τ = 5.

Fig. 2. Structure of a copula-based multivariate modeling for condi-
tional characterization of forecast errors.

where
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⎥
⎥
⎥
⎥
⎥
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(3)

is the matrix of errors, where ωζ
t and εζ

t are the ζth observation
of wind power and the corresponding forecast error at time t,
respectively. Each column of Mω and Mε can be used to calcu-
late an empirical (nonparametric) pdf. It should be emphasized
that the calculated pdfs are independent at this stage. Hence, it
cannot be used as a reliable model unless the actual dependence
structure and its parameters (the relationships between pdfs) are
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added. Fig. 2 shows an outline of such a multivariate model-
ing using the concept of copulas. Color bars show the empirical
marginal pdfs ft(ωt) and ft(εt) that are directly calculated from
data in (1) and connected to each other using a copula function.
This offers a unified multivariate model of historical forecasting
data that includes exact nonlinear dependence structure required
to estimate PIs.

A copula function can be simply defined as the joint distribu-
tion of two or more random vectors each transformed as uniform
random variables. Advantages of using copulas for multivari-
ate data are considerable [43]. First, by using copula modeling
concept, the joint distribution can be decomposed into the de-
pendency structure (copula function) and the marginal distribu-
tions. The marginal distribution of a subset of a collection of
random variables is defined as the probability distribution of the
variables contained in the subset. Hence, each variable can be de-
scribed by a different distribution (e.g., Gaussian, Weibull, etc.).
Furthermore, copula functions capture the complete dependence
structure that is unlike the linear correlation coefficient which
measures co-variations up to the second order.

Let G be an n-variate distribution function with marginal
distributions F1 , . . . , Fn . There exists an n-dimensional copula
C such that for all x in �n

G (x1 , . . . , xn ) = C (F1 (x1) , . . . , Fn (xn )) . (4)

Copula C is unique for all continuous marginal distributions.
On the other hand, if C is an n-dimensional copula and Fi are
cdfs, then the function G according to (4) is an n-variate joint
distribution of random variable x.

Two main types of copulas exist: 1) elliptical; and 2)
Archimedean. Full description of these types and their prop-
erties is out of the scope of this paper (information can be found
in [43]). However, it should be noted that the Archimedean copu-
las cannot be easily implemented in higher than two dimensions
and the practical option here is elliptical copulas. The Gaussian
copula is employed in this paper as it fits wind data very well
[44].

In order to construct the model by fitting a copula, the fol-
lowing procedure should be follows.

1) Calculate cdfs of all variables (i.e., marginal cdf).
2) Select a copula function. Gaussian copula is preferred

here as it provides fast calculations over more than two
variables.

3) Perform maximum likelihood estimation for calculating
parameters of the selected copula considering cdf vectors
in step 1. This gives the most fitting positive semidefinite
matrix of the rank correlation [43].

4) The unified model of the data according to the Skalars
theorem [43] can be calculated at this stage using (4).

5) Use inverse cdfs to get samples from the model.

A. Model-Based Conditional Forecast Error

Assuming the finite collection of samples according to (1),
the finite dimensional distribution in the cdf form can be
written as

P (Ψ ≤ ω,E ≤ ε |ω, ε )

= CΣ

(
{Fi (ωi)}T

i=1 , {Fj (εj )}T
j=1 |ω, ε

)

= CΣ

(
{ui}T

i=1 , {uj}2T
j=T +1 |ω, ε

)
(5)

where CΣ is the copula function, Fi(ωi) and Fj (εj ) are the
marginal cdf of the wind power and error series, respectively
for the corresponding Ψ and E random variables, and P is the
probability. {ui} is the set of transformed distributions accord-
ing to [43]. The sequence of {ui} is the same as the sequence of
variables in M according to (1). The joint density of the data in
(1), can be obtained by differentiating (5) with respect to (ω, ε)

P (ω, ε |Ψ, E ) = cΣ

(
{Fi (ωi)}T

i=1 , {Fj (εj )}T
j=1 |ω, ε

)

×
T∏

i=1

fi (ωi)
T∏

j=1

fj (εj ) (6)

where f(.) are pdfs and cΣ(.) is the copula density function that
by assuming nth cross-partial derivative of CΣ , can be derived
from (here, it is assumed that n = 2T and the joint density is
equal to the product of the marginal densities by the copula
density)

f
(
{ui}T

i=1 , {uj}2T
j=T +1

)
=

∂2T

∂u1∂u2 · · · ∂u2T

×F
(
{ui}T

i=1 , {uj}2T
j=T +1

)
=

T∏

i=1

fi(ui)
2T∏

j=T +1

fj (uj )

× ∂2T

∂u1∂u2 · · · ∂u2T
CΣ

(
{Fi (ui)}T

i=1 , {Fj (uj )}2T
j=T +1

)

=
T∏

i=1

fi(ωi)
T∏

j=1

fj (εj )cΣ

(
{Fi (ωi)}T

i=1 , {Fj (εj )}T
j=1

)
.

(7)

Once the multivariate model is calculated, the Monte Carlo
method can be used to calculate the conditional PIs. This method
can be carried out by constructing a comprehensive dataset.
This dataset can then be used for calculating and updating the
conditional PIs. The algorithm is as follows.

1) Construct a comprehensive look-up dataset that includes
a large number of samples (e.g., 500 000) drawn from
the multivariate model of forecasting data in (6). As the
distributions are nonparametric, a kernel smoothing tech-
nique is recommended. The minimum number of samples
to ensure a successful implementation can be determined
by experiment or according to the Appendix.

2) Calculate conditional pdf of interest simply by searching
for the realized matching past values of wind power and
forecast errors over the forecasting interval T using the
look-up dataset in step 1. This simple procedure is justi-
fied based on the following: Assume Xi’s are the random
variables representing PIs

f(x1 , . . . , xn ) = f1(x1) × f2(x2 |x1 )
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Fig. 3. Stages of the proposed method: offline modeling and charac-
terization along with real-time calculation and robust optimization.

× f3(x3 |x1 , x2 ) ×
× · · · × fn (x∗

n |x1 , . . . , xn−1 ) (8)

where fn (x∗
n |x1 , . . . , xn−1 ), as the only parameter to be

determined, represents conditional error distribution of
the PI of interest given that X1 = x1 , . . . , Xn−1 = xn−1 .
It should be mentioned that a small tolerance/threshold
should be considered when searching for the matching
power and error values. This is due to the fact that the
number of samples in step 1 is finite.

A detailed flowchart of the proposed method is shown in
Fig. 3. The flowchart illustrates how the ensembles (equiva-
lently, scenarios or data samples) can be generated for repre-
senting possible realizations of uncertain forecasts under study.
These ensembles are then used as inputs to the optimization
problem and should exploit critical characteristics leading to
a robust decision policy. Three robust optimization stages are
described in Section III.

It should be noted that the modeling and most of the re-
quired analytics can be handled offline. Hence, real-time or
online operations would be more efficient. This is in addition
to the increase in computational efficiency because of using a
single-run robust optimization method which is described in
Section III. The proposed forecasting and optimization ap-
proach, in general, can be viewed as an adaptive algorithm

Fig. 4. Example of the point forecasting data from NREL [48]. Wind
data along with the error data are used in constructing the proposed
model.

that changes its behavior based on resources available and the
history of data recently received.

B. Application to Empirical Data, Correlation Analysis,
and Verification

The suggested algorithm is implemented using the data
recorded in California. Fig. 4 shows a typical window of
recorded wind power along with the 4 h-ahead forecasts selected
from the National Renewable Energy Library’s (NREL) west-
ern wind dataset for year 2005, site no. 4492 [48]. The variable
hour-ahead point forecast data is obtained by using a high-order
multilayer neural network [49]. It should be emphasized that the
proposed approach can be applied regardless of the type of the
method used to obtain the point forecasts. Both forecasts and
recorded data have an hourly time resolution. Forecasting time
horizon can be varied from 1 to 24 h ahead based on the selected
point forecast method and is updated every hour.

Parameters of the model using the aforementioned dataset are
t = [1, 24], T = 24 h, and ζ = 365, as the modeling matrices M
is of order 365 × 48, according to (1) and (2). Fig. 5(a) and (b)
illustrates 48-h of 4 h-ahead forecasts using the proposed algo-
rithm. Fig. 5(a) is a fan chart that shows ranges for likely values
of forecasted data alongside a line showing the most likely value
or a central estimate. As the predicted PIs are asymmetric (since
the proposed model uses empirical densities), the fan chart is
centered at the more likely forecast, i.e., the mode.

At each look-ahead time (e.g., every 4 h in Fig. 4), these
prediction ranges or PIs spread out as forecasts become increas-
ingly uncertain with time until the next look-ahead time. At this
point, the algorithm is updated with the most recent outcomes
and the copula-based model is simulated again in order to cal-
culate conditional PIs according to the previous section. This is
shown in Fig. 6, only for a single 4 h-ahead forecasting.

Performance of the proposed approach is compared to four
other forecasting methods including the persistence method,
the autoregressive integrated moving average (ARIMA), ex-
ponential smoothing method (ESM), and the Gaussian model
using the same training and verification data for benchmarking.
The Gaussian PIs are developed using samples from a normal
distribution, whose parameters are calculated with the same
procedure as the proposed method. The Gaussian PIs are also
referred to as predictive confidence intervals [41].

The persistence method and ESM are known to be difficult
to outperform for short-term forecasting, hence they are used
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Fig. 5. Example of the conditional PIs calculated by the proposed al-
gorithm (a) using a fan chart showing out-of-sample forecasts and (b) by
showing all percentiles at a single-increment resolution with 99% percent
confidence.

Fig. 6. Calculated conditional PIs using the proposed copula-based
multivariate model based on newly updated measurements of wind
power.

as benchmark [18]. The forecast error for the persistence point
forecasting method is assumed to be normally distributed with
the mean and variance given by the last observations. The ESM’s
error is assumed to be normal as well with its mean conditional
on smoothed values of past observations and its variance condi-
tional on smoothed value of past squared residuals [45]. A high-
order ARIMA model is also considered. The ARIMA model is
adopted from [46] which provides a more advanced benchmark
to better demonstrate the effectiveness of the proposed model.

Fig. 7 shows the actual dependence structure of the wind
power together with the forecast error, compared to the simu-
lated data using five models. As shown in Fig. 7, the proposed
algorithm captures the actual structure of the temporal depen-
dence. The spatial dependence between wind power levels and
forecasting error is also well captured. It is interesting to note
the following characteristics.

1) The temporal dependence structure of wind power time
series is nonlinear. The specific multivariate modeling

Fig. 7. Multivariate temporal dependence structure of wind power PIs
alongside forecast error series for the whole year. Color map shows
Pearson’s correlation coefficient.

(the Gaussian copula that is assigned to CΣ in ((5)) used
to capture nonlinear temporal dependence outperforms
autoregressive and Markov models [44].

2) There is a one-sided asymmetric dependence structure
between wind power levels and the corresponding fore-
cast error; that is, the fact that the forecast error at each
time is correlated with the historical data of wind power
levels used to make the forecast. Representing this kind
of asymmetric dependence can only be made possible by
using copulas.

3) As an inherent essential characteristic of the point fore-
casting algorithm, the forecast error has no specific struc-
ture of temporal dependence. This is misrepresented by
the ESM, ARIMA, and persistence methods.

Fig. 8 illustrates application of the modeling strategy pro-
posed by Fig. 2 from which the PIs in Fig. 5 are calculated.
The PIs depicted in Fig. 8 shows that the proposed approach
successfully uses empirical distributions. In other words, this
is the first probabilistic forecast of wind power that provides
nonparametric empirical distributions as PIs. This is particularly
useful for more accurate representation of uncertainty in near
future. It should be reemphasized that the error data from the
point forecast engine is considered within the model, according
to (5)–(7) which include cross correlations.

Four scores are used to quantify the outcomes of the proposed
and benchmark methods. Two deterministic scores include
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Fig. 8. (a) Complete modeled distributions of wind power PIs and fore-
cast error for the corresponding data in Fig. 5, using second 24-h time
interval. (b) The same probabilistic information of (a) in 3-D. This illus-
tration shows the direct application of the proposed modeling concept in
Fig. 2 to real data.

root mean square error, RMSE =
√

1/T
∑T

t=1(xt − x̂t)2 , and

mean absolute error, MAE = 1/T
∑T

t=1 |xt − x̂t |, where x̂t is
the predicted value of xt .

The continuous rank probability score (CRPS) and log score
are utilized to evaluate the performance of the probabilistic
forecasts [47]. The CRPS has become one of the popular and
reliable tools for probabilistic forecast evaluations, particularly
for ensemble forecasts [46]. For the h-step ahead probabilistic
forecast pdf ft+h |t , let Ft+h |t be the corresponding cdf. Then,
the CRPS is defined as

CRPS =
∫ 1

0
[Ft+h |t(x) − 1(x − xt+h)]2dx (9)

where 1(x − xt+h) is the indicator function which is equal to
one when (x − xt+h) is positive.

The log score is defined as the mean negative log of the fore-
cast pdf evaluated at the corresponding observation, log score =
1/T

∑T
t=1 −log(ft+h |t).

Forecast performance scores of all methods are listed in
Table I, calculated in percent of rated power. These are aver-
age values assuming 95% confidence. Table II lists probabilistic
scores by calendar months. Both probabilistic and determinis-
tic performance scores show noticeable improvement over the
benchmark and state-of-the-art methods.

TABLE I
FORECASTING PERFORMANCE OF THE PROBABILISTIC METHODS (MEAN OF

ENSEMBLE SKILL SCORES AS % OF RATED POWER AND 95%
CONFIDENCE INTERVAL)

RMSE MAE CRPS Log Score

Proposed Ensembles 9.2374 6.0801 6.4001 7.0168
ARIMA-Based PIs 24.8038 18.2355 14.0399 12.0141
Gaussian PIs 15.7000 12.9189 11.9236 13.1523
Persistence 27.1923 17.3575 n/a n/a
ESM 16.1590 10.3211 n/a n/a

TABLE II
PROBABILISTIC FORECAST SKILL SCORES AS % OF RATED POWER AND

95% CONFIDENCE INTERVAL FOR SELECTED SITE AND
CALENDAR MONTHS

Month Score Proposed ARIMA Gaussian

January CRPS
Log Score

8.7566 12.1764 10.8639
9.014 10.6834 14.6758

February CRPS
Log Score

7.1053 15.7392 12.6834
10.4975 12.9157 12.2844

March CRPS
Log Score

6.6007 16.3714 12.1445
9.23658 13.4943 13.211

April CRPS
Log Score

5.0046 20.3158 11.9222
7.9884 14.3135 11.3132

May CRPS
Log Score

4.6078 15.1173 15.7494
8.1993 11.5927 14.1255

June CRPS
Log Score

6.7277 11.7928 11.5692
7.0768 10.8676 13.5737

July CRPS
Log Score

4.7458 13.4213 13.9934
6.9217 11.1687 16.2326

August CRPS
Log Score

5.6498 11.9618 12.9955
7.0642 10.6933 13.5204

September CRPS
Log Score

6.2188 13.2992 10.666
7.4220 12.3324 14.1512

October CRPS
Log Score

6.2910 13.5862 9.7724
7.4757 11.3956 10.6387

November CRPS
Log Score

6.7152 13.2846 9.9455
7.8243 13.3804 10.9508

December CRPS
Log Score

8.382 11.4137 10.7784
7.4815 11.3325 13.15129

III. ROBUST OPTIMIZATION UNDER FORECAST UNCERTAINTY

This section investigates practical effectiveness of the pro-
posed uncertainty model in Section II for robust optimization
of energy storage which corresponds to the last three stages in
Fig. 3. A case study involving optimal operation of an energy
storage-based microgrid is presented. Then, the robust opti-
mization problem is explained in order to compensate for the
uncertainty of wind forecasts.

A. Case Study: Optimal Operation of Energy Storage
in a Microgrid

Fig. 9 shows the architecture of a theoretical micro-
grid that operates using several distributed micro-sources
and a hydrogen-based energy storage system in an islanded
situation. Consumption of hydrogen should be controlled in
order to provide a higher reliability and to minimize load inter-
ruptions during islanded operation.
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Fig. 9. Diagram of the hybrid system under study. Both the generation
side and load side are distributed and based on the short-term wind
power forecasts, the only operational control strategy is assumed for the
energy storage.

By minimizing the following objective function, the optimal
adjustment of energy storage (ΔH) at each look-ahead time
horizon can be calculated.

min
∑

n

MCn + LC (10)

in terms of ΔH = Ht+τ − Ht (11)

subject to 0 ≤ Ht ≤ Max (12)

Pwind + PP V + PF C = (L − LC)/ηC (13)

Sim(ΔH) = 1 (14)

where

MCn Maintenance cost of component n;
LC load loss due to curtailment;
ΔH hydrogen storage adjustment at each look-ahead

time;
Ht stored hydrogen at time t;
Ht+τ stored hydrogen at the end of the forecasting hori-

zon;
Pwind forecasted wind power used for supplying load;
PP V preassigned available PV power;
PF C available fuel cell power from ΔH according to

(15);
L total load;
ηC converters efficiency.

Hydrogen is utilized through a proton exchange mem-
brane fuel cell. The equivalent heating value of hydrogen is
3.4 kWh/m3 and its density is about 0.09 kg/m3 . There-
fore, the amount of energy yield per kilogram of hydrogen is
37.8 kWh/kg and the electricity produced by the fuel cell can be
calculated as PF C [kWh] = ΔH[kg] × ηF C × 37.8, where ηF C

is the efficiency of the fuel cell. Hydrogen is produced from the
electrolysis of water that happens within the controller in Fig. 9.
The amount of hydrogen storage is proportional to the available
electricity from the wind generation as follows:

ΔH[kg] =
Pw2h [kWh]

41.97[kWh/kg]
(15)

where Pw2h is the predicted wind power used for producing
hydrogen and the constants are according to [51]. The Sim(ΔH)
function performs the system simulation in order to verify that
the system operation fulfills the uninterrupted power supply
requirement of the sensitive loads during the simulation time
span. If verified, the output would be 1, otherwise 0. Detailed
definition of the Sim(ΔH) is as follows. Assume

PG = (Pwind + Pw2h) + PP V (16)

and

PL = (L − LC)/ηC (17)

are the total generation and load, then, the rules for calculating
the output is as follows.

1) If PG = PL , then the storage capacity remains un-
changed.

2) If PG > PL , then the power surplus is used to produce
hydrogen and supply the storage tank according to (15).
If the tank reaches its maximum limit, the remainder of
the power will not be used.

3) If PG < PL , then the power deficit required to supply the
load is supplied by the fuel cell, according to (17).

The above steps are carried out for all times, eventually in-
dicating one of the following outcomes: 1) the successful op-
eration of the system which returns 1 in the output, or 2) the
storage tank is discharged below the lowest permissible limit. If
the latter occurs, the system operation is considered as a failure
for which the simulation might not guarantee reliable power
supply of the sensitive loads. It is assumed that 20% of the load
consists of sensitive loads and cannot be curtailed. Hence, the
output would be 0 if the chances of curtailing sensitive loads
are higher than 2%. It should be noted that for regular loads
the cost of curtailment is added to the objective function as the
parameter LC.

B. Calculation of Robust Solution Considering Forecast
Uncertainty of Wind Power

It is assumed that the only uncertainty in the introduced mi-
crogrid results from the wind powers variable behaviour and
forecasting errors. The controller/electrolyzer for the hydrogen
storage receives short-term forecasts of wind power as input and
determines optimal operational adjustments. Robust optimiza-
tion is required to tackle effects of forecast uncertainty.

Robust optimization [39] deals with problems subject to
a family of constraints that are parameterized by uncertainty
terms. The ARP, as outlined in the Introduction, contributes to
determining an optimal solution that is feasible for all possible
constraints in the parameterized family. Meanwhile, it is impor-
tant to note that this guarantees performance not in a determin-
istic sense, i.e., satisfaction of all possible uncertain outcomes,
but instead in a probabilistic sense, i.e., satisfaction of a major
set of the uncertainty possibilities or outcomes. In mathematical
terms, an ARP may be formalized as

min
θ∈Rn

cT θ subject to : θ ∈
⋂

s∈{1,...,N }
Θs (18)
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Fig. 10. Interpretation of the ARP’s scenario approach to the RCP (as
modified from [39]).

where θ is the optimization variable, s is the uncertainty index
represented by N samples, drawn according to the probability
distribution of the uncertainty, and {Θs}s=1,...,N is a finite col-
lection of convex sets in Rn . The objective to be minimized can
be nonlinear or in any other form. It should be noted that θ can
be assumed separately from s, as it is the case for the presented
case study. Hence, the constraints are a function of the opti-
mization variable (θ

.= ΔH) and the uncertainty variable (ps):
f(θ, ps) ≤ 0, where ps = {Pwind + Pw2h}s for the sth sam-
ple and s = 1, . . . , N represents samples calculated from the
proposed PIs.

Furthermore, as in an application of the particle swarm op-
timization for solving the deterministic problem, the objective
function can be of any form and even nonlinear nonconvex
functions can be handled. Hence, the ARP is based on sam-
pling at random a finite number of constraints in the family
∩s∈{1,...,N }f(θ, ps) ≤ 0 and solving the corresponding deter-
ministic problem.

The constraints, according to the problem of (10)–(14), are
selected based on the probabilistic PIs or ensembles, hence, the
resulting optimal solution θ̂N is a random variable that depends
on the random samples. Therefore, θ̂N would be a η-level solu-
tion for a given random sampling

N ≥ Nlinear (η, β) =̇
⌊

nθ

ηβ

⌋
(19)

where nθ is the number of variables and the parameter β bounds
the probability that θ̂N is not a η-level solution. Accordingly, β
is the confidence related to the solution algorithm.

Therefore, with probability no smaller than 1 − β, θ̂N is η-
level robustly feasible. Both parameters have a similar effect
on the algorithm by (19). For example, %95 confidence and
%95 robustness can be achieved by β = 0.05 and η = 0.05,
respectively. The inequality (19) provides the minimum number
of sampled constraints that are needed in order to attain the
desired probabilistic levels of robustness in the solution. The
function Nlinear gives therefore a bound on the generalization
rate of the scenario approach which relates to the ability of the
scenario solution of being feasible (with high probability) also
with respect to constraints that were not explicitly taken into
account in the solution of the ARP (unseen scenarios). Nlinear

is a linear function with respect to β−1 . Fig. 10 gives a visual
interpretation of this theorem.

Optimization of all modeling outcomes drawn from the PIs
provides a sampling of the optimal solution space. The final

Fig. 11. Daily robust optimal operation of hydrogen storage based on
multivariate conditional PIs of wind power forecasts.

Fig. 12. Comparison of (a) distribution of the amounts of available
hydrogen at each hour for the operation of the microgrid over one year
and (b) the energy available from hydrogen over one year versus daily
adjustments.

admissible and implementable optimal outcomes can then be
extracted using the ARP. Wind forecast data of Section II is used
and the uncertainty is according to the proposed and benchmark
methods.

Fig. 11 shows normalized optimal adjustments of energy stor-
age along with the load and wind power variations. The wind
power forecasts provide 24 PIs for each day throughout the year.
Each PI is represented by conditional scenarios of forecast un-
certainty calculated from 500 000 samples of the multivariate
copula-based model (see the Appendix). The ARP used to solve
the problem of (10)–(14) uses a minimum of N = 200 scenario
constraints based on (19).
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The main practical importance of using conditional PIs can be
illustrated by Fig. 12. Fig. 12(a) shows that by using conditional
PIs, the availably of energy from the energy storage system is
often higher compared to other methods and deterministic point
forecasts. The main reason is that the temporal dependence of
forecast data is preserved by conditional PIs; hence, optimal
operation of the energy storage conforms to the actual available
energy from wind generation. A similar outcome is shown in
Fig. 12(b) for the available energy from the hydrogen storage
over a year of daily operation. It is interesting that by using
the proposed robust optimization, more energy can be extracted
from the system which makes the microgrid more reliable.

On the other hand, by randomly sampling the uncertainty
of wind power forecasts, given that the uncertainty model is
accurate and appropriate, the original infinite constraint set has
been substituted with a finite set of N constraints. The resulting
operations of storage [e.g., in Fig. 11 or Fig. 12(b)] fail to satisfy
only a small portion of the original infinite constraints; however,
by satisfying (19), it is explicitly guaranteed that the solution
is practical and sufficiently robust. In the presented case study,
the storage operations with probability no smaller than 0.9, are
robustly feasible with a risk factor of 0.1.

IV. CONCLUSION

A stochastic model is proposed to characterize forecasting
error of wind power. Both conditional and temporal interdepen-
dence between forecast error data and wind power levels can
be captured by the model. By obtaining numerous short-term
forecasting data over a long-term period (e.g., 6 h-ahead fore-
casts over a year), the accuracy of the proposed algorithm can
be verified. The copula-based modeling is then used to calcu-
late conditional empirical PIs or scenarios of future wind power
uncertainty to assign the point forecasts with likely outcomes.
Scenarios of wind power forecasts are then applied to optimize
the required energy storage adjustments using a new method
of robust programming. The presented method provides an ef-
ficient and explicit bound on the number of scenarios essential
to obtain a solution that guarantees an a-priori specified ro-
bustness. Hence, there is a probabilistic guarantee of constraint
satisfaction for decisions made on the modeled PIs. This is
demonstrated by the results of a microgrid operation strategy
involving hydrogen storage systems.

APPENDIX

ESTIMATING MINIMUM SIZE OF SAMPLE POOL

This appendix provides a simple formula for determining the
minimum sample size for an efficient simulation. However, a
more reasonable way is to experiment with different sample
sizes in order to obtain sufficient output from the algorithm in
Section II-A. Suppose that the sample pool required by the al-
gorithm estimates γ = E[g(X)], where X is the random vector,
and f(x) is the modeled density of X. Then, simulation by
sampling gives the estimate

γ̂ =
1

Ns

Ns∑

j=1

g(Xj) (20)

with standard error δ̂ = δ
√

Ns where Ns is the sample size and
δ2 is the sample variance. The quality of estimation Q can be
represented by half of the confidence interval (α) for γ

Q = zα/2

√
Var(g(X))

Ns
(21)

where z is the standard normal distribution. For better accuracy
of the estimate, Q should be made small. Minimum sample size
for achieving accuracy of Q is

Ns ≥
zα/2

Q
× Var(g(X)). (22)

For example, zα/2 = 2.58 for 99% confidence. If the variance
is 10, assuming simulation of 48 variables, then a simple choice
of Ns ≥ 123 000 roughly provides quality of at least Q = 1%.
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